
UCRL-PROC-212586

Determining Cross Sections for Reactions
on Unstable Nuclei: A Consideration of
Indirect Approaches

J. Escher, F. S. Dietrich

May 27, 2005

2nd Argonne/MSU/JINA/INT RIA Workshop - Reaction
Mechanisms for Rare Isotope Beams
East Lansing, MI, United States
March 9, 2005 through March 12, 2005



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Determining Cross Sections for Reactions on Unstable
Nuclei: A Consideration of Indirect Approaches

J. Escher1 and F.S. Dietrich

Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, CA 94551, USA

Abstract. An indirect method for determining cross sections for reactions proceeding through a compound nucleus is
presented. The appropriate theoretical framework for applications of this method is reviewed and theoretical and experimental
challenges that need to be addressed in applications of the method are outlined. Two approximations are considered and their
advantages and limitations are discussed.
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1. INTRODUCTION

A large number of nuclear reactions cannot be easily determined in the laboratory. Direct measurements encounter a
variety of difficulties: The low-energy regime that is especially relevant for astrophysical reactions is often inaccessible
and cross sections for charged-particle reactions become vanishingly small as the relative energy of the colliding
nuclei decreases. Furthermore, many reactions involve unstable nuclear species which are too difficult to produce with
currently available experimental techniques or too short-lived to serve as targets in present-day set-ups.

In order to overcome the experimental limitations, various indirect methods have been proposed in recent years.
Coulomb Dissociation [1], e.g., has been used to extract cross sections for radiative-capture reactions, A(a,γ)B. In this
approach, the Coulomb field of a highly charged target provides a virtual photon, which is absorbed by the projectile
B. The cross section of the breakup X(B,Aa)X is much larger than the capture cross section and can be related to
the latter via the principle of detailed balance. The ANC (Asymptotic Normalization Coefficient) Method [2] has been
explored for low-energy radiative-capture reactions A(a,γ)B which are dominated by processes occurring far outside
the nuclear radius. The cross section of such a reaction depends on the asymptotic behaviour of the overlap function
IB
Aa for B → A + a. The radial shape of IB

Aa is well known, and its normalization, the ANC, can be determined via
a peripheral transfer reaction that involves the same asymptotic overlap, e.g. d + A → b + B, where d = a + b and
B = A + a. The Trojan-Horse method [3] provides a mechanism for circumventing the Coulomb barrier which is
responsible for the very small cross sections in low-energy two-body reactions with charged projectiles, A(a,b)B. It
does so by selecting a reaction d +A→ b+B+c with d = a+c and kinematic conditions such that c can be considered
a spectator in the reaction between a and A (‘quasi-free scattering’). An approximate expression for the cross section
of the three-body reaction then provides a link to the two-body reaction of interest and allows one to extract the energy-
dependence of the latter. Thus it becomes possible to extrapolate absolute measurements carried out at higher energies
to the relevant low-energy regime.

The focus of this contribution is an indirect method that complements the above approaches, the Surrogate Nuclear
Reactions method. The Surrogate method combines experiment with reaction theory to obtain cross sections for
compound-nucleus reactions involving difficult-to-produce targets. In this article, we discuss the Surrogate approach
and two approximations to the method. In the next section the Surrogate idea is explained and the appropriate
theoretical framework for describing a Surrogate reaction is outlined. In Section 3, we discuss briefly the Weisskopf-
Ewing limit of the full Hauser-Feshbach theory and consider its implications for the Surrogate approach. In Section 4,
we outline a new idea [4], which aims at extracting ratios of reaction cross sections from Surrogate experiments. An
independent measurement of one of the reactions can then be used to obtain an unknown cross section. The “Ratio
method” was recently employed to estimate the 237U(n,f) cross section [5]. We discuss some of the advantages and
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FIGURE 1. Schematic representation of the Surrogate reaction mechanism. The basic idea of the Surrogate approach is to replace
the first step of the desired reaction by an alternative (“Surrogate”) reaction that populates the same compound nucleus. The
subsequent decay of the compound nucleus into the relevant channel can then be measured and used to extract the desired cross
section.

limitations of this approach. Concluding remarks are given in Section 5.

2. THE SURROGATE METHOD

The Surrogate nuclear reaction technique is an indirect method for determining the cross section for a particular type
of “desired” reaction, namely a two-step reaction, a + A → B∗ → c +C, that proceeds through a compound nuclear
state B∗, a highly excited state in statistical equilibrium (see Figure 1). In the Surrogate method, the compound nucleus
B∗ is produced by means of an alternative (“Surrogate”) reaction, here d +D → b+B∗, and the reaction cross section
is obtained by combining the calculated cross section for the formation of B∗ (from a and A) with the measured decay
probabilities for this state. The Surrogate technique is particularly valuable when the target of interest, A, is short-lived
and a suitable Surrogate reaction involving a stable target D can be identified. A simple version of the Surrogate idea
was already used in the 1970s to estimate neutron-induced fission cross sections from transfer reactions [6]. More
recently, this approach was refined [11] and applications to other reactions are now being considered, such as (n,γ)
reactions on s-process branch points [7].

2.1. Hauser-Feshbach Formalism for Compound-Nucleus Reactions

The formalism appropriate for describing compound-nucleus reactions is the statistical Hauser-Feshbach theory
(see, e.g., chapter 10 of Ref. [8]). The average cross section per unit energy is given by:

dσ HF
αχ (Ea)

dEχ
= πλ̄ 2

α ∑
JΠ

ωJ
α ∑

lsl′s′I′

T J
αlsT

J
χl′s′ρI′(U ′)

∑′
χ ′′l′′s′′ T

J
χ ′′l′′s′′ +∑χ ′′l′′s′′I′′

∫
T J

χ ′′l′′s′′(Eχ ′′)ρI′′(U ′′)dEχ ′′

. (1)

where it is assumed that the reaction proceeds to an energy region in the final nucleus described by a level density.
Here α denotes the entrance channel a + A and χ represents the relevant exit channel c +C, Ea is the kinetic energy
of the projectile, and λ̄α is the reduced wavelength in the incident channel (the inverse of the wave number). The
spin of the incident particle is i, the target spin is I, the channel spin is ~s =~i +~I, and the compound-nucleus angular
momentum and parity are Jπ . The statistical-weight factor ω J

α is (2J +1)/[(2i+1)(2I+1)]. Similarly, the spin of the
outgoing particle is i′, the spin of the residual nucleus is I ′, and the channel spin for χ ′ is~s′ =~i′ +~I′. The transmission
coefficients are written as T J

αls and ρI′(U ′) denotes the density of levels of spin I ′ at excitation energy U ′ in the
residual nucleus. All energetically possible final channels χ ′′ have to be taken into account, thus the denominator
includes contributions from decays to discrete levels in the residual nuclei (given by the first sum in the denominator,
∑′) as well as contributions from decays to regions of high level density in the residual nuclei (given by the second sum
in the denominator which involves an energy integral of transmission coefficients and level densities in the residual
nuclei). For simplicity, the parity quantum numbers have been suppressed in Equation 1. In realistic applications of



the Hauser-Feshbach formalism, the level density depends on parity (even though this dependence tends to be weak),
and all sums over quantum numbers respect parity conservation.

The above Hauser-Feshbach formula neglects correlations between the incident and outgoing reaction channels.
These correlations can be taken into account formally by including width fluctuation corrections Wαχ in the Hauser-
Feshbach formula. The primary effect of the correlations is an enhancement of the elastic scattering cross section. Due
to the requirement of flux conservation the inelastic and reaction cross sections are reduced, although this depletion
rarely exceeds 10-20%, even at relatively low energies (below approximately 2 MeV). As the excitation energy of
the compound nucleus increases and many reaction channels become available, the effect of the width fluctuations
becomes quickly negligible for the non-elastic channels.

In the remainder of this contribution we will neglect these correlations and set Wαχ = 1. (The elastic channel will
be considered separately wherever necessary.) This then allows us to rewrite the Hauser-Feshbach formula as:

dσ HF
αχ (Ea)

dEχ
= ∑

JΠ
σCN

α (Eex,J,π)GCN
χ (Eex,J,π), (2)

where σCN(Eex,J,π) = σ(a + A → B∗) denotes the cross section for forming the compound nucleus at excitation
energy Eex with angular-momentum and parity quantum numbers Jπ and GCN

χ (Eex,J,π) is the branching ratio for the
decay of this compound state into the desired exit channel χ .

2.2. Hauser-Feshbach Formulation of the Surrogate Method

In the limit of negligible width fluctuation corrections considered here, the formation and decay of the compound nu-
cleus are independent of each other, individually for each angular momentum and parity value. It is this independence
that allows one to determine the desired cross section via a combination of theory and experiment in the Surrogate
approach. In many cases the formation cross section σCN

α can be calculated to a reasonable accuracy by using opti-
cal potentials while the theoretical branching ratios GCN

χ for the different channels χ are often quite uncertain. The
objective of the Surrogate method is to determine or constrain these decay probabilities experimentally.

In a Surrogate experiment, the compound nucleus B∗ is produced via an alternative (Surrogate), direct reaction
d + D → b + B∗ and the decay of B∗ is observed in coincidence with the outgoing particle b. The direct-reaction
particle is typically stopped in a detector which provides particle identification, as well as information on the kinetic
energy and direction of b. The desired exit channel χ can be identified, e.g., by detecting fission fragments from B∗ or γ
rays from the desired residual nucleus C. The probability for forming B∗ in the Surrogate reaction (with specific values
for the excitation energy Eex, angular momentum J, and parity π) is FCN

δ (Eex,J,π), where δ refers to the entrance
channel d+D. The quantity

Pδ χ(Eex) = ∑
J,π

FCN
δ (Eex,J,π) GCN

χ (Eex,J,π) , (3)

which gives the probability that the compound nucleus B∗ was formed with energy Eex and decayed into channel χ , can
be obtained experimentally. The direct-reaction probabilities FCN

δ (Eex,J,π) have to be determined theoretically, so that
the branching ratios GCN

χ (Eex,J,π) can be constrained from the measurements. In practice, the decay of the compound
nucleus is modeled and the GCN

χ (Eex,J,π) are obtained by fitting the calculations to reproduce the measured decay
probabilities Pδ χ(Eex). Subsequently, the branching ratios obtained in this manner are inserted in Equation (2) to yield
the desired reaction cross section. For simplicity, we have omitted the angular dependence of both the desired and the
Surrogate reactions in the above discussion. The extension of the Hauser-Feshbach formulae is straight-forward [8].

2.3. Challenges for the Surrogate Method

In practice the procedure of determining the branching ratios is a difficult task due to several theoretical and
experimental challenges: i) The experimental determination of the decay probability Pδ χ(Eex) = Nδ χ/Nδ requires
that both the number of b-χ coincidences, Nδ χ , and the number of reaction events, Nδ are accurately determined. If
target contaminants are present, it becomes very difficult, if not impossible to determine a reliable value for Nδ . ii)
The theoretical prediction of the direct-reaction probabilities FCN

δ (Eex,J,π) requires a framework for calculating cross



sections of direct reactions (stripping, pick-up, and inelastic scattering) to continuum states in B∗. iii) Extracting the
branching ratios from measured decay probabilities Pδ χ(Eex) requires modeling the decay of the compound nucleus
produced in the Surrogate reaction and fitting the relevant parameters to reproduce the experimental results. iv) The
possibility that the intermediate nucleus produced in the Surrogate reaction decays before statistical equilibrium is
reached [9, 13, 14] has to be excluded or minimized.

3. THE WEISSKOPF-EWING LIMIT

The Hauser-Feshbach theory used in the previous section rigorously conserves total angular momentum J and parity
π . Under certain conditions the branching ratios GCN

χ (Eex,J,π) can be treated as independent of J and π and the form
of the cross section (for the desired reaction) simplifies to:

dσW E
αχ (Ea)

dEχ
= σCN

α (Eex) G
CN
χ (Eex) (4)

where

σCN
α (Eex) = ∑

JΠ
σCN

α (Eex,J,π) = πλ̄ 2
α

∞

∑
l=0

(2l +1)Tαl (5)

is the reaction cross section describing the formation of the compound nucleus at energy Eex and G CN
χ (Eex) denotes

the Jπ-independent branching ratio for the exit channel χ . This is the Weisskopf-Ewing limit of the Hauser-Feshbach
theory. It is applicable when the following conditions are satisfied [9, 10]:

• The energy of the compound nucleus has to be sufficiently high, so that almost all channels into which the nucleus
can decay are dominated by integrals over the level density (i.e. the first sum in the denominator of Equation 1,
∑′ has to be negligible).

• Width fluctuations have to be negligible. This will be the case if the previous condition is satisfied.
• The transmission coefficients T J

χ ′′l′′s′′ associated with the available exit channels have to be independent of the
spin of the states reached in these channels. This condition is known to be satisfied since the dependence of
transmission coefficients on target spin is generally weak.

• The level densities ρI′′(U ′′) in the available channels have to be independent of parity and their dependence on the
spin I′′ of the relevant nuclei has to be of the form ρI′′(U ′′) ∝ (2I′′ +1). Using tools from statistical mechanics, it
can be shown that for sufficiently high excitation energies U ′′, level densities are very weakly dependent on parity,
so that the first of these conditions can be assumed to be satisfied. The second condition, which is a prerequisite
for a rigorous derivation of the Weisskopf-Ewing limit from the full Hauser-Feshbach theory, is satisfied if the
spin I′′ is smaller than the spin cutoff parameter σcut in the relevant level density formula. In some cases, the spin
cutoff parameter is not very large (e.g. σcut ≈ 6− 7 in the actinide region) but it is known empirically that the
Weisskopf-Ewing limit is still roughly correct at higher spins.

The cross section in Equation 4 is expressed in differential form, with respect to the energy in the decay channel.
For a comparison with a measurement the cross section needs to be integrated over all final-state energies, i.e. the
quantity G CN

χ appearing on the right side has to be integrated over the energy Eχ . In the following only integrated
quantities will be considered; the energy differential will be removed from the cross section expressions and the G CN

χ
will represent integrated branching ratios.

3.1. The Surrogate Method in the Weisskopf-Ewing Limit

The Weiskopf-Ewing limit provides a simple and powerful approximate way of calculating cross sections for two-
step reactions proceeding through a compound nucleus. In the context of Surrogate reactions, it greatly simplifies the
application of the method: It becomes straightforward to obtain the Jπ-independent branching ratios G CN

χ (Eex) from
measurements, since Pδ χ(Eex) = G CN

χ (Eex)∑Jπ FCN
δ (Eex,J,π) = G CN

χ (Eex), and to calculate the desired reaction cross



section. Calculating the direct-reaction probabilities FCN
δ (Eex,J,π) and modeling the decay of the compound nucleus

are no longer required.
A Surrogate analysis in the Weisskopf-Ewing approximation was used in the 1970s to extract (n, f ) cross sections

for various actinides from transfer reactions with t and 3He projectiles on neighboring nuclei, followed by fission [6].
Measured fission probabilities, Pf , were multiplied by an estimated cross section for the formation of the compound
nucleus in the neutron-induced reaction of interest: σ(n, f ) ≈ σCN

n Pf . The resulting (n, f ) cross section estimates agreed
with direct measurements (where available) to about 10-20% for incident neutron energies above about 1 MeV,
but exhibited serious discrepancies below 1 MeV, which were attributed to i) large uncertainties in the low-energy
optical-model calculations employed, and ii) the neglect of the difference in the angular-momentum populations of the
compound nucleus in the Surrogate (direct) and “desired” (neutron-induced) reactions. A more recent analysis of the
data used a simple direct-reaction model to account for the angular-momentum difference between the neutron-induced
and direct reactions, i.e. it employed the full Surrogate framework, as well as improved optical-model calculations [11].
The results showed significant improvements over the earlier work in the Weisskopf-Ewing approximation.

The assumption that the Weisskopf-Ewing limit is valid implies a significant restriction for possible applications. At
low excitation energies in the compound nucleus, the Weisskopf-Ewing description is not even approximately valid.
For example, astrophysical (n,γ) reactions on s-process branch points cannot be estimated with this method since the
relevant neutron energies are very low, En . 100 keV, i.e. the compound nucleus is excited to only slightly above the
neutron separation threshold. At higher energies the assumption of Jπ-independent branching ratios, GCN

χ (Eex,J,π)

≈ G CN
χ (Eex), breaks down for angular-momentum values larger than the relevant spin-cutoff parameter. This may

affect the desired and Surrogate reactions differently, since the angular-momentum transferred is in general larger
in the direct reaction than in the compound-nucleus reaction. For example, a Weisskopf-Ewing description might be
applicable to an n-induced reaction on a target with small spin, while the Surrogate reaction that produces the same
compound nucleus might populate states with spins much larger than the spin-cutoff parameter. In such situations a
full Surrogate analysis, which takes into account conservation of spin and parity, is required.

Despite the simplifications that can be obtained in the Weisskopf-Ewing description, a number of issues remain to
be resolved when applying this approximate version of the Surrogate approach. First, it is not a priori clear whether
the Weisskopf-Ewing limit applies to a particular reaction in a given energy regime. This needs to be verified for
each case of interest. In addition, even in the Weisskopf-Ewing limit it is necessary to consider the possibility that the
intermediate nucleus which is produced in the Surrogate reaction can decay before it reaches equilibrium. Furthermore,
Surrogate experiments in the Weisskopf-Ewing limit are still challenging since the requirement that both the number
of b− χ coincidences and the number of reaction events be accurately determined remains.

4. RATIOS OF SURROGATE MEASUREMENTS

In a recent publication [5], a new approach was employed with the goal of determining the neutron-induced fission
cross section for 237U, for neutron energies up to approximately 14 MeV. This new approach, which we shall refer to
as the “Ratio method”, makes use of the Surrogate idea and requires the validity of the Weisskopf-Ewing limit. The
primary motivation for using the Ratio method is the fact that it eliminates the need to accurately measure Nδ , the total
number of reaction events, which has been the source of the largest uncertainty in Surrogate experiments performed
recently.

The goal of the Ratio method is to experimentally determine the ratio

R(E) =
σα1χ1

σα2χ2

(6)

of the cross sections of two compound-nucleus reactions, a1 +A1 → B∗
1 → c1 +C1 and a2 +A2 → B∗

2 → c2 +C2, where
the two reactions have to be “similar” in a sense that remains to be specified. An independent determination of one of
these cross sections then allows one to infer the other by using the ratio R. In the Weisskopf-Ewing limit, the ratio R
can be written as

R(E) =
σCN

α1
(E) G CN

χ1
(E)

σCN
α2 (E) G CN

χ2 (E)
, (7)



with branching ratios G CN
χ that are independent of the Jπ population of the compound nuclei under consideration.

For most cases of interest the compound-nucleus formation cross sections σCN
α1

and σCN
α2

can be calculated sufficiently
reliably by using an optical model.

To determine G CN
χ1

/GCN
χ2

, two experiments are carried out. Both use the same direct-reaction mechanism, D(d,b)B∗,
but different targets, D1 and D2, to create the relevant compound nuclei, B∗

1 and B∗
2, respectively. For each experiment,

the number of coincidence events, N(1)
δ1χ1

and N(2)
δ2 χ2

, is measured. The ratio of the branching ratios, for decay into the
desired channel, for the compound nuclei created in the two reactions is given by:

G CN
χ1

(E)

G CN
χ2 (E)

=
N(1)

δ1χ1
(E)

N(2)
δ2χ2

(E)
×

N(2)
δ2

(E)

N(1)
δ1

(E)
. (8)

In the Ratio approach the experimental conditions are adjusted such that both experiments give the same number of
reaction events, N(1)

δ1 χ1
≈ N(2)

δ2χ2
. This requires that the same setup be used in both experiments. Furthermore, the beam

intensities and beam times have to be the same in both cases, and the number of atoms in each target must be equal or
the differences have to be accounted for in the data analysis. Under those conditions, the ratio of the branching ratios
simply equals the ratio of the coincidence events and the quantity R becomes:

R(E) =
σCN

α1
(E) N(1)

δ1 χ1
(E)

σCN
α2 (E) N(2)

δ2 χ2
(E)

(9)

The definition of the energy E in the above equations remains to be specified. Typically, the energy-dependence of
a compound-nucleus formation cross section, σCN

α = σ(a + A → B∗) is characterized by the kinetic energy of the
projectile, Ea, while a branching ratio is normally given as a function of the excitation energy of the compound
nucleus, G

CN
χ (Eex). In a compound-nucleus reaction, those two values are related via the separation energy Sa of the

particle a in B∗: Eex = Sa +Ea. While either Eex or Ea can be used to uniquely specify the energy-dependence of such
a reaction, it is important for the Ratio method that the comparison of the relevant reactions, a1 +A1 → B∗

1 → c1 +C1
and a2 +A2 → B∗

2 → c2 +C2, be made at the same projectile energy Ea. For a given projectile energy, Ea1 = Ea2 , small
differences in the separation energies, Sa1 and Sa2 , will lead to different excitation energies in the compound nuclei,
B∗

1 and B∗
2, respectively. In typical applications of interest the branching ratios are less sensitive to such variation in

excitation energy than the formation cross sections are to an energy variation of this magnitude. Thus, in the context
of the Ratio approach, we take E to denote the kinetic energy of the projectile.

An illustration of the Ratio method. In Ref. [5], the Ratio method was used to obtain an estimate of the 237U(n,f)
cross section up to approximately 14 MeV. To this end, the ratio

R =
σ(237U(n, f ))
σ(235U(n, f ))

≈

σCN
n+237U G CN

238U→ f

σCN
n+235U G CN

236U→ f

, (10)

was considered, where the cross section σ(235U(n, f )) for neutron-induced fission of 235U is known. The formation
cross sections for the compound nuclei 238U and 236U were assumed to be very similar, σCN

n+237U ≈ σCN
n+235U . To obtain

information on the branching ratios G CN
238U→ f and G CN

236U→ f , inelastic deuteron scattering experiments on 238U and 236U

were carried out. Fission fragments from 238U(d,d′ f ) and 236U(d,d′ f ) were detected in coincidence with the outgoing
deuterons and

G CN
238U→ f

G CN
236U→ f

≈
N238U(d,d′ f )

N236U(d,d′ f )
(11)

was determined. Corrections were applied to account for differences in target thickness and beam intensity. The
resulting cross section ratio was found to be in agreement with a theoretical estimate by Younes et al. [12].



4.1. Limitations of the Ratio Approach

The experiments required for a Ratio analysis are simpler than those that need to be carried out if a full Surrogate
analysis (or a Surrogate analysis in the Weisskopf-Ewing limit) is planned. The primary advantage of considering
relative branching ratios and relative cross sections lies in the fact that the number of direct-reaction events, Nδ , does
not need to be determined for a Ratio analysis. Furthermore, unlike in the full Surrogate treatment, it is not necessary
to calculate the direct-reaction probabilities, FCN

δ (E,J,π), or to model the decay of the compound nucleus.
The Ratio method is based on the assumption that the Weisskopf-Ewing approximation is valid. It is therefore

subject to the same restrictions that apply to the use of a Surrogate analysis in the Weisskopf-Ewing approximation,
although small deviations from this assumption might affect the Ratio analysis to a lesser extent.

The Ratio method is also limited by the requirement that for obtaining an absolute result for an unknown cross
section σ(a1 +A1 →B∗

1 → c1 +C1) a reliable independent cross-section measurement for a similar reaction, a2 +A2 →

B∗
2 → c2 +C2, at the same equivalent projectile energies, must be available. Furthermore, it is required that a direct-

reaction mechanism, D(d,b)B∗, and target-projectile combinations can be identified that make it possible to produce
the compound nuclei, B∗

1 and B∗
2, respectively.

One can expect reliable cross section estimates from the Ratio approach only when the two reactions that are
analyzed, D1(d,b)B∗

1 and D2(d,b)B∗
2, are sufficiently similar. When small systematic errors or small violations of

the prerequisite assumptions, such as the validity of the Weisskopf-Ewing approximation or the absence of non-
equilibrium decays, affect both reactions in the same manner, it is likely that the effects cancel in part in the Ratio
analysis. Uncorrelated errors and deviations, on the other hand, will increase the overall uncertainty in the final result.
Similarity in the present context implies that i) the same projectile initiates the compound-nucleus reactions that
are compared, i.e. a1 = a2, and the same kind of decay (gamma emission, charged-particle emission, or fission) is
considered in both cases; ii) the decays of the compound nuclei B∗

1 and B∗
2 have similar properties (number and kind of

open channels, separation energies for the various channels, level densities in the residual nuclei, etc.); iii) the direct
(Surrogate) reactions which produce the compound nuclei employ the same mechanism, D(d,b)B∗, and projectile-
ejectile combination, d−b, in both cases.

5. CONCLUDING REMARKS

Indirect methods play an important role for obtaining many reaction cross sections of interest. A method which
aims at extracting cross sections for reactions proceeding through a compound nucleus has been presented. While
the Surrogate method is very general and can in principle be employed to determine cross sections of all types of
compound-nucleus reactions on a large variety of nuclei, significant challenges remain to be addressed to establish
the validity of this approach. For applications to (n,f) cross sections on actinide nuclei, Younes and Britt have studied
some of these issues [11] and for applications to (n,γ) cross sections on lighter nuclei, work is currently underway [7].
In the interim, it is useful to investigate whether certain simplifications or approximations to the method can be
utilized to determine the relevant cross sections. Two possible approximations to the Surrogate method have been
considered here, the Weisskopf-Ewing limit of the Surrogate method and the Ratio approach. Both provide simple and
potentially powerful ways of estimating cross sections that cannot be measured directly. Both are much simpler than a
full Surrogate treatment and both are much more limited in their applicability.
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